A 3D-engineered porous conduit for peripheral nerve repair
نویسندگان
چکیده
End-to-end neurorrhaphy is the most commonly used method for treating peripheral nerve injury. However, only 50% of patients can regain useful function after treating with neurorrhaphy. Here, we constructed a 3D-engineered porous conduit to promote the function recovery of the transected peripheral nerve after neurorrhaphy. The conduit that consisted of a gelatin cryogel was prepared by molding with 3D-printed moulds. Due to its porous structure and excellent mechanical properties, this conduit could be collapsed by the mechanical force and resumed its original shape after absorption of normal saline. This shape-memory property allowed a simply surgery process for installing the conduits. Moreover, the biodegradable conduit could prevent the infiltration of fibroblasts and reduce the risk of scar tissue, which could provide an advantageous environment for nerve regeneration. The efficiency of the conduits in assisting peripheral nerve regeneration after neurorrhaphy was evaluated in a rat sciatic nerve transected model. Results indicated that conduits significantly benefitted the recovery of the transected peripheral nerve after end-to-end neurorrhaphy on the static sciatic index (SSI), electrophysiological results and the re-innervation of the gastrocnemius muscle. This work demonstrates a biodegradable nerve conduit that has potentially clinical application in promoting the neurorrhaphy.
منابع مشابه
Effect of Local Administration of Laminin and Fibronectin with Chitosan Conduit on Peripheral Nerve Regeneration: A Rat Sciatic Nerve Transection Model
Objective-Effect of local administration of laminin and fibronectin on nerve regeneration was assessed. Design- Experimental study. Animal- Sixty male Wistar rats. Procedures- The animals were divided into four experimental groups (n=15), randomly: In transected group left sciatic nerve was transected and stumps were fixed in adjacent muscle. In treatment group (CHIT/LF) the defect was bridg...
متن کاملEffect of Local Administration of Brain Derived Neurotrophic Factor with Silicone Conduit on Peripheral Nerve Regeneration: a Rat Sciatic Nerve Transection Model
Objective- The objective was to assess local effect of brain derived neurotrophic factor (BDNF) on functional recovery of peripheral nerve in rat sciatic nerve transection model. Design- Experimental study. Animals- Sixty male healthy white Wistar rats Procedures- The animalswere randomized into four experimental groups of 15 animals each: In sham-operated group (SHAM), sciatic nerve was exp...
متن کاملScaffoldless tissue-engineered nerve conduit promotes peripheral nerve regeneration and functional recovery after tibial nerve injury in rats
Damage to peripheral nerve tissue may cause loss of function in both the nerve and the targeted muscles it innervates. This study compared the repair capability of engineered nerve conduit (ENC), engineered fibroblast conduit (EFC), and autograft in a 10-mm tibial nerve gap. ENCs were fabricated utilizing primary fibroblasts and the nerve cells of rats on embryonic day 15 (E15). EFCs were fabri...
متن کاملFibrin glue as a stabilization strategy in peripheral nerve repair when using porous nerve guidance conduits
Porous conduits provide a protected pathway for nerve regeneration, while still allowing exchange of nutrients and wastes. However, pore sizes >30 µm may permit fibrous tissue infiltration into the conduit, which may impede axonal regeneration. Coating the conduit with Fibrin Glue (FG) is one option for controlling the conduit's porosity. FG is extensively used in clinical peripheral nerve repa...
متن کاملProstaglandin E1 Combined with Chitosan Conduit Improves Sciatic Nerve Regeneration in Rats
Objective- To studylocal effect of prostaglandin E1on sciatic nerve regeneration Design- Experimental study Animals- Sixty male healthy white Wistar rats Procedures- Sixty animals were divided into four experimental groups (n = 15), randomly: Trasnsected (TC), Sham-operation (SHAM), control (CHIT) and prostagl...
متن کامل